Combining Coagulation/MIEX with Biological Activated Carbon Treatment to Control Organic Fouling in the Microfiltration of Secondary Effluent
نویسندگان
چکیده
Coagulation, magnetic ion exchange resin (MIEX) and biological activated carbon (BAC) were examined at lab scale as standalone, and sequential pre-treatments for controlling the organic fouling of a microfiltration membrane by biologically treated secondary effluent (BTSE) using a multi-cycle approach. MIEX gave slightly greater enhancement in flux than coagulation due to greater removal of high molecular weight (MW) humic substances, although it was unable to remove high MW biopolymers. BAC treatment was considerably more effective for improving the flux than coagulation or MIEX. This was due to the biodegradation of biopolymers and/or their adsorption by the biofilm, and adsorption of humic substances by the activated carbon, as indicated by size exclusion chromatography. Coagulation or MIEX followed by BAC treatment further reduced the problematic foulants and significantly improved the flux performance. The unified membrane fouling index showed that the reduction of membrane fouling by standalone BAC treatment was 42%. This improved to 65%, 70%, and 93% for alum, ferric chloride and MIEX pre-treatment, respectively, when followed by BAC treatment. This study showed the potential of sequential MIEX and BAC pre-treatment for controlling organic fouling and thus enhancing the performance of microfiltration in the reclamation of BTSE.
منابع مشابه
Membranes coupled with physico chemical treatment in water reuse.
In this study, short-term experiments were conducted with different configurations of membrane hybrid systems to treat biological treated sewage effluent containing refractory organic pollutants: (i) submerged hollow fiber microfiltration (SMF) alone; (ii) spiral flocculator (SF)-SMF without settling; (iii) SF-PAC-SMF without settling and (iv) SMF with magnetic ion exchange resin MIEX pretreatm...
متن کاملIlca: In-line Coagulation and Adsorption for Pre- Treatment to Ceramic Microfiltration
The use of ceramic low pressure membranes for drinking water production has been increasing in the past decades. However, fouling during membrane operations is still a challenging topic that requires attention and investigation. During filtration of surface water, a major contribution to fouling is attributed to the presence of dissolved organic carbon(DOC) and its fractions which comprise biop...
متن کاملPowder Activated Carbon Pretreatment of a Microfiltration Membrane for the Treatment of Surface Water
This study focused on the effect of powder activated carbon (PAC) adsorption on microfiltration (MF) membrane performance. The results showed that PAC pretreatment offered high organic matter removal rates for both dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm (UV254) during 10-200 mg/L PAC dosage. The removal efficiencies of organic matter by MF membrane filtration decrea...
متن کاملEffects of super-powdered activated carbon pretreatment on coagulation and trans-membrane pressure buildup during microfiltration.
As a pretreatment for membrane microfiltration (MF), the use of powdered activated carbon (PAC) with a particle size much smaller than that of conventional PAC (super-powdered PAC, or S-PAC) has been proposed to enhance the removal of dissolved substances. In this paper, another advantage of S-PAC as a pretreatment for MF is described: the use of S-PAC attenuates trans-membrane pressure increas...
متن کاملMembrane Biological Reactors (MBR) and Their Applications for Water Reuse
The term 'membrane bioreactor' expresses a combination of activated sludge and membrane separation processes. The need to processes like sedimentation and disinfection used in common methods is eliminated through MBR systems in a way that membranes are placed into or out of an aeration tank and the vacuumed wastewater created by the suction pump is pulled up from inside the membranes and leaves...
متن کامل